If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-127=0
a = 1; b = 8; c = -127;
Δ = b2-4ac
Δ = 82-4·1·(-127)
Δ = 572
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{572}=\sqrt{4*143}=\sqrt{4}*\sqrt{143}=2\sqrt{143}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{143}}{2*1}=\frac{-8-2\sqrt{143}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{143}}{2*1}=\frac{-8+2\sqrt{143}}{2} $
| 3+15x=150 | | 20=2x(-5 | | -10x+16=-7x+10 | | 6*a=42 | | 8y+43=15y+6 | | 63=14y-7y | | -2w=-2w-10 | | 174=77-w | | -5-3(x-8)=-5x+19 | | 3-5(x+4)=2x-3 | | 3y+36=6y | | 6(2n+3)=7(5n+7)+8 | | 13+9x=60 | | 8(2+x)=69 | | 23=n | | 22+54x=10(6x-2 | | -2(2x-11)=7 | | -6x+3-7=-x+10x-8 | | -6x+4-7=-x+10x-8 | | -12=19-4k+3 | | Y=48-5x | | x13-9=4 | | 9n-6.7+3n+30.7=90 | | -2=x-(-15) | | 256+144=c^2 | | -7=n-(-12) | | -3=-9-v | | 5x-1+3x+19=180 | | 7.1+x=9.8 | | 72+x=120 | | 4(4x+1)=3x-7x | | p=(2*74)+(2*83) |